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Abstract: A new mathematical model developed to predict behavior of debris flows and avalanches 
also holds promise for predicting behavior of debris-laden flash floods. The model assumes that 
debris flows behave as mixtures of interacting Newtonian fluids and Coulomb solids. Solid and fluid 
constituents obey three-dimensional mass and momentum balances, which are summed and depth- 
integrated to yield equations that describe shallow flows of the mixture as a whole. An important 
distinction between these mixture equations and standard shallow-water equations results from strong 
variation of flow resistance due to interacting solid and fluid forces. Partitioning of flow resistance 
between solid and fluid components depends on fluid pressure, which evolves as flow evolves. If 
fluid pressure supports the total weight of the flowing mass, all resistance results from hydrodynamic 
forces, and the equations reduce to the conventional shallow-water form. If fluid pressure supports 
none of the weight of the flowing mass, all flow resistance results from Coulomb friction between 
interacting solids, and the equations describe motion of granular avalanches. A combination of solid 
and fluid resistance typifies debris flows and debris-laden flash floods. In these flows solid resistance 
commonly is concentrated at the fronts of advancing bores that may be heavily freighted with rocks 
and woody debris. Riemann methods provide an effective tool for solving the shallow flow equations 
numerically and predicting unsteady motion of debris flows and flash floods along paths with arbitrary 
geometry and inclination. 

INTRODUCTION 

Debris flows are churning, water-saturated masses of fine sediment, rocks, and assorted detritus that 
originate on mountain slopes and course down stream channels when they reach valley floors. Strong 
interactions of solid and fluid forces greatly influence the behavior of debris flows and distinguish 
them from related phenomena such as rock avalanches and water floods (Iverson, 1997). However, 
flash floods can resemble debris flows if floods entrain enough woody debris or coarse sediment to 
markedly increase friction at the fronts of advancing bores. 

Mechanistic modeling of debris flows and debris-laden flash floods traditionally entails fitting model 
predictions to field data by adjusting the values of flow-resistance coefficients. Uncertainties about 
flow rheology and resistance afford great latitude for adjusting coefficient values until desirable fits 
are attained. However, coefficient adjustment lends little mechanical insight and provides no 
foundation for development of improved theoretical models. 

In this paper we describe a depth-averaged flow model that avoids use of adjustable coefficients in 
most circumstances. The model was originally developed to simulate debris flows but is readily 
adaptable to simulation of debris-laden flash floods. For debris-flow simulations, flow resistance is 
computed from the following quantities: flow-path topography represented by gridded elevation data, 
sub-grid-scale bed topography (roughness) represented by a Coulomb friction angle, the internal 
Coulomb friction angle of the granular solids, the pore-pressure dif&sivity of the solid-fluid mixture, 



and the viscosity and volume fraction of the fluid phase. For flood calculations viscous fluid 
resistance must be replaced by an expression that accounts for hydrodynamic turbulence. In all cases 
the model accounts for the strong influence of cross-stream momentum fluxes on flow dynamics, 
because it computes motion of debris flows or debris-laden floods across three-dimensional terrain. 

GOVERNING EQUATIONS 

We first summarize the depth-averaged equations of motion we use to simulate debris flows. 
Elsewhere we provide detailed derivations of these equations (Iverson and Denlinger, 2000; 
Denlinger and Iverson, 2000). The equations express the laws of conservation of mass and linear 
momentum for concentrated mixtures of Coulomb granular solids and Newtonian viscous liquids 
without significant fluid turbulence. The equations are referenced to a local coordinate system that 
is fitted to the underlying topography (Figure 1). For each local coordinate system (i.e. each cell or 
facet of topography) the equations may be written compactly as 
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In these equations the independent variables are time t and the space coordinates x and y. The 
dependent variables are the depth-averaged velocity components i$xy, t) and i$qy,t) and the flow 
depth h(xy,t) in the z direction, normal to the bed (Figure 1). The function sgn used in (3) and (4) 
designates the sign (+ or -) of its argument. 

The basic parameters in the governing equations are the components of gravitational acceleration, 
g,, gv, and g,; the components of the local bed slope,O, and B,(measured in radians from the 
horizontal); the internal and basal friction angles of the solid grains, cp,,and vbed; the viscosity and 
volume fraction of the intergranular fluid, u and uY; and the bulk density of the grain-fluid mixture, 
p . These fundamental, measurable parameters are used to derive the other coefficients in (l)-(4), 
which are defined in (5)-(7). The coefficient h represents the ratio of the basal pore-fluid pressure, 
pbed, to the total basal normal stress, pgJz. Values of h vary as a function of x, y, and t and are 
obtained by computing pbed using an advection-diffusion equation described below. The longitudinal 
stress coefficient k act,pOssis derived from Coulomb failure theory and determines the magnitude of 
grain-contact normal stresses in the x-y plane (Iverson, 1997). Typically, values of k,,t,pa,, exceed 
1 where flow locally converges (k=tpllss) but are less than 1 where flow locally diverges (k= kact). 
As a result, depth-averaged longitudinal stresses in grain-fluid mixtures are more complicated than 
those in one-phase fluid flows. The coefficient c is the gravity-wave speed that determines the rate 
of longitudinal information propagation in the flow. The equation defining c is more complicated 
than the analogous equation for fluid flows, owing to the effects of longitudinal grain stresses and 
variable fluid pressure. However, the definition oft reduces to the standard shallow-water definition c = @ 
if the grain-fluid mixture is Mly liquefied (h = 1) and Coulomb grain-contact stresses vanish. 

The most obvious difference between (l)-(4) and the conventional shallow-water equations exists in 
the source terms, SX and SY, which represent the sum of driving and resisting forces per unit area of 
the bed (divided by p). The equations defining S, and SY each contain six terms. In order, these 
terms have the following physical significance: 1. gravitational driving force; 2. resisting force due 
to granular Coulomb friction at the bed, which is influenced by bed curvature; 3. resisting force due 
to viscous fluid drag resolved at the bed; 4. longitudinal normal force due to viscous fluid elongation 
or compression in the direction of flow; 5. intergranular Coulomb force due to velocity gradients 
transverse to the direction of flow; and 6. viscous fluid force due to velocity gradients transverse to 
the direction of flow. Forces associated with longitudinal stress gradients due to variations in h are 
excluded from S, and Su and instead are contained within c, as noted above. 



In SX and S, the terms involving space 
derivatives of bed slope account for all effects of 
bed curvature (e.g., I%,/& = 1 /rx , wherer, is the 
x component of the local radius of curvature; 
Figure 1). These curvature terms represent the 
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effects of coordinate transformations that show 
how changes in bed slope redirect x and y 
momentum components to keep them parallel to 
the bed (e.g., Savage and Hutter, 1991). 
Redirection of the x and y momentum 
components influences basal normal stresses and 
thereby produces changes in Coulomb resistance 
and flow thickness. Where finite changes in bed 
slope occur between adjacent computational cells, 
we use the approximation &3,/& = tan (A8,lhx) 
to account for curvature of the bed (Denlinger 
and Iverson, 2000). ’ 
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Evaluation of X: The basal fluid-pressure ratio h=pbedIPgzh defined in (5) must be evaluated 
simultaneously with the dependent variables that describe flow, V,(xy,t), V,(XJJ) and h(xy,t). 
Guided by observations and measurements in large-scale experiments (Iverson, 1997; Major and 
Iverson, 1999), we infer that basal fluid pressures advect with depth-averaged flow and 
simultaneously diffuse normal to the bed, obeying (Iverson and Denlinger, 2000) 

aPbed - aPbed - aPbed = D a2p - - 
at +‘x ax ‘3 ay -I az2 bed (8) 

where 1 bed designates that the diffusion term is evaluated at the bed, where z = 0. The pore-pressure 
ditisivity, D, determines the rate of pressure diffusion and is defined by D = kElp , where k is the 
intrinsic hydraulic permeability of the aggregate solid debris and E is its compressive stiffness. For 
typical debris-flow mixtures D has values in the range 10-7-10-3 m2/s (Iverson, 1997; Major et al., 
1997). These values imply, for example, that excess fluid pressures in flows 1 m thick can persist for 
times ranging from minutes to months, once excess pressures are established. (Excess fluid pressures 
are those in excess the hydrostatic fluid pressure, pbed = pJuidg). This hydrostatic pressure is less 
than the total basal pressure pg,h used to define h, because the fluid density pflUid is less than the total 
mixture density, p.) Excess fluid pressures are generally established during the initial stages of 
debris-flow motion due to soil contraction and liquefaction (Iverson et al., 2000). 

Modification for Flash Floods: Fluid forces play a different role in flash floods than in debris flows 
because volumetric sediment concentrations in the body of flash floods are too low to form an 
interconnected granular matrix. Therefore, in the body of flash floods, Coulomb grain-contact forces 
are negligible and pore-pressure diffusivity is irrelevant. Consequently, we infer that fluid pressures 
are uniformly hydrostatic (the usual shallow-water assumption) in the body of flash floods and that 
suspended solids merely increase the fluid density. We also infer that turbulent energy dissipation is 
important in flash floods, and that the viscous resistance terms in (3) and (4) must be replaced by 



terms representing the effects of turbulence. Adopting turbulence terms suggested by Vreugdenhil 
(1994), we reduce (3)-(7) to forms applicable to the watery body of flash floods 
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These relationships demonstrate that the standard shallow-water equations are a special case of our 
debris-flow equations (modified to account for fluid turbulence). 

The dimensionless turbulent stress coefficient sr used in (9) and (10) depends on relative boundary 
roughness and Reynolds number, and its value cannot, in general, be specified without some estimate 
of flow speeds and depths. However, for flows on rough beds at high Reynolds numbers (> 105), 
values of sf commonly are of the order of 0.1. For flows across rugged terrain, exact values of s 
are relatively unimportant because multidimensional momentum transport described by equations (1 i 
and (2) accounts for the effect of topography on water-surface slopes (Denlinger et al., 1998). 

If the leading margin of a flash flood scours or abrades stream banks or the bed and thereby acquires 
substantial quantities of woody debris or coarse sediment, the flood wave may act somewhat like a 
debris flow with a high-friction snout and low-resistance tail. To model the mechanics of a debris- 
laden bore, equations (9)-( 13) can be blended with the more general equations (3)-(7). In this case 
values of the basal fluid-pressure ratio vary from h = 0 at the leading edge of the bore, where solid 
Coulomb friction dominates resistance, to h= 1 in the part of the flood where fluid turbulence 
dominates resistance. For flash floods, of course, energy dissipation due to fluid forces is modeled 
using the turbulent stress terms in (9) and (10) rather than the viscous stress terms in (3) and (4). 

Discrimination of Bore Fronts: A key step in computing motion of debris flows and flash floods 
with debris-laden bores involves discrimination of bore-front regions with low values of h and high 
Coulomb friction. Equation (8) with constant pore-pressure difisivity is insufficient for this purpose. 
According to (8), the only factors affecting the distribution of h are initial conditions, downstream 
pressure advection, and the local flow thickness and pore-pressure diffusivity. To these factors we 
add kinematic criteria for identifying fronts of bores, which we infer have elevated difisivities and 
depleted pore pressures. We identify fronts ofbores as those regions where flow thickness decreases 
in the downstream direction. Such regions satisfy one or more of the kinematic criteria 
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Where such criteria are met, we increase D significantly (typically by l-2 orders of magnitude) before 
solving (8). In the extreme case of a bore composed entirely of large rocks or woody debris, we 
assume that D is essentially infinite and that no fluid pressure can be sustained. This simplistic 
assumption yields relatively good predictions of debris-flow motion (Denlinger and Iverson, 2000). 

Mass Change (Erosion and Sedimentation): Debris flows and debris-laden flash floods can 
significantly change their mass by entraining or depositing debris in transit, and mass change may 
significantly affect flow dynamics. Mass change is a three-dimensional process. Field observations 
indicate that flow mass typically increases as a result of undermining and scouring channel banks, and 
that flow mass decreases progressively where channels widen or slopes decline. 

Mass-change terms can be added with little dificulty to the momentum and mass balances expressed 
in (1) and (2) but a significant difficulty attends use of such terms. Mass change depends on poorly 
constrained external forces that govern substrate strength and influence momentum transfer between 
the flowing mass and its three-dimensional boundaries (Iverson, 1997). These external forces must 
be included in models that compute adjustments of the basal boundary position due to erosion and 
sedimentation. For the present, we ignore the possibility of mass change and focus on the simpler 
case in which boundaries are fixed and flow mass is constant. Evaluation of forces associated with 
mass change remains an outstanding problem that must be solved to develop a complete 
understanding of the dynamics of debris flows and flash floods. 

NUMERICAL SOLUTION TECHNIQUE 

The nonlinear, hyperbolic partial differential equations (l)-(4) require special techniques for numerical 
solution in arbitrarily complex domains such as those imposed by three-dimensional flow-path 
topography. We use a technique that constructs solutions throughout complex flow domains by 
solving elementary Riemann problems that govern the magnitudes and directions of mass and 
momentum fluxes through the walls of individual computational cells (Toro, 1997). Elsewhere, we 
describe details of our technique (Denlinger and Iverson, 2000). Here we outline some aspects of 
the technique that are particularly important for computing motion of debris flows and flash floods. 

The Riemann methodology recasts equations (1) and (2) in terms of Jacobian matrices A and B. 
Then (1) becomes 

au +*.E+&!l = s 
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The Riemann problem consists of first computing the trajectories along which information about the 
conserved variables U propagates in space and time (given by eigenvectors of A and B), and then 
balancing fluxes of the conserved variables along these trajectories. Explicit Euler integration 
incorporates the effects of the source terms, S, and advances the solution in time. This approach has 
great advantages for minimizing numerical dispersion and tracking shocks. Accurate shock tracking 
is more important for predicting behavior of debris flows and flash floods than is typically the case 
for slower water floods. Prevalence of steep flow paths, abrupt flow fronts, severe topographic 
obstructions, and variability of the gravity-wave speed, c, commonly causes shock-rich behavior in 
debris flows and flash floods. 

Numerous techniques have been devised for numerical solution of Riemann problems (Toro 1997). 
Techniques differ chiefly according to the scheme used to balance fluxes across grid-cell boundaries. 
We use a technique (called HLLC) that generates approximate solutions to exact Riemann problems 
involving the nonlinear terms in A and B (Toro, 1997). Denlinger and Iverson (2000) provide details 
of our implementation of the HLLC solver. 

Flow-front Propagation SDeeds: Debris flows and flash floods have sharply defined flow fronts, 
which pose unique challenges for predictive models. Numerically, such fronts occur wherever zero 
flow depth exists adjacent to a computational cell. Our means of computing the speeds of these 
fronts follows a rationale like that of Toro (1997, p. 140) for an analogous problem involving vacuum 
fronts in shock tubes. Here we focus on the equation governing the speed of a flow front advancing 
in the right-hand (positive X) direction, but analogous equations apply to advancing and receding 
fronts in all directions. 

Mass and momentum conservation dictate that physical information emanating from flow fronts 
propagates in a manner that preserves a quantity (known as a Riemann invariant) defined by 

IL ‘VxlL +2c,, (17) 

for the case Sx = 0. Here the subscript L denotes waves moving left (upstream) from the flow front. 
Very near the flow front (whereh -t Oand u - 0), it is reasonable to assume that Sx - 0, and we 
therefore assume that IL is approximated we i 1 by (17). We then equate values of IL at the flow front 
(denoted by subscript 0) and at any other point just upstream of the flow front, yielding 

Vxlo +2c, = vx/, +25 



However, near the flow front the gravity wave speed c approaches zero because h + 0, and precisely 
at the front, co = 0 exactly. Substituting this value in (18) and combining the result with (17) yields 

which indicates that the speed of the mixture at the flow front equals the Riemann invariant associated 
with the left-going waves emanating from the flow front. Moreover, since the mixture thickness 
tapers to zero at the flow front, the mixture speed equals the speed of the front itself. Effectively, the 
speed of the right-going fi-ont is dictated by the rate at which material discharges from the left. 

CONCLUDING DISCUSSION 

This paper highlights key features of a mathematical model we have developed to simulate motion 
of debris flows and debris-laden flash floods. Elsewhere, we describe details of model formulation 
and tests of model predictions against experimental data for dry granular avalanches and water- 
saturated debris flows (Iverson and Denlinger, 2000; Denlinger and Iverson, 2000). Here we 
introduce model modifications necessary to simulate motion of debris-laden flash floods. In all cases 
a central feature of the model is use of depth-averaged mass- and momentum-conservation equations 
applicable to flow over three-dimensional terrain. Another key feature is use of a Riemann solution 
algorithm that does not restrict model applications to smooth or gently sloping beds. These features 
appear crucial for extending the model to analyze flows that change mass as they move through 
realistic landscapes. 
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